Synthesis of the CDE/FG Ring Models of Prymnesins: Reassignment of the Relative Configuration of the E/F Ring Juncture

Makoto Sasaki,*,† Makoto Ebine,† Hiroyuki Takagi,† Hiroyuki Takakura,† Takeshi Shida,‡ Masayuki Satake,† Yasukatsu Oshima,† Tomoji Igarashi,§ and Takeshi Yasumoto§

*Graduate School of Life Sciences, Tohoku University, Tsutsumidori-amamiya, Aoba-ku, Sendai 981-8555, Japan, Graduate School of Science, Uni*V*ersity of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan, and Tama Laboratory, Japan Food Research Laboratories, Nagayama, Tama, Tokyo 206-0025, Japan*

masasaki@bios.tohoku.ac.jp

Received March 8, 2004

¹⁵⁰¹-**¹⁵⁰⁴**

ABSTRACT

Synthesis of two diastereomeric models (3a and 3b) corresponding to the CDE/FG ring of prymnesins, polycyclic ether toxins isolated from the red tide phytoflagellate *Prymnesium parvum***, is described. Comparison of the ¹ H and 13C NMR data for each compound with those reported for prymnesins suggests that the earlier stereochemical assignment of the E/F ring juncture needs to be revised.**

Prymnesium parvum is a unicellular alga that blooms in brackish water and causes massive fish kills worldwide. The causative toxins, prymnesin-1 (PRM1, **1**) and prymnesin-2 (PRM2, **2**), were isolated from cultured cells of the phytoflagellate. These toxins possess extremely potent hemolytic activity, which is about 5000-fold greater than that of Merk saponin on a molar basis, and also exhibit potent ichthyotoxicity. Their gross structures, including partial stereochemistry, were determined by Igarashi et al.^{1,2} Prymnesins possess unique structural features: an unbranched single chain of 90 carbons except for a single methyl group, a fused polycyclic ether ring system (A-^E ring), four distinct 1,6-dioxadecalin units (FG, HI, JK, and

analysis. Recently, the absolute configuration at C14 bearing an amino group in PRM2 was determined to be *S* by using a chiral anisotropic reagent and that at chlorinated C85 to be *S* by fluorimetric chiral HPLC comparison between a degradation product and synthetic references (Figure 1).³ On the basis of the extensive NOE data as well as coupling constants, it was proposed that the E/F ring juncture adopted a twisted gauche rotamer, where two pairs of diaxial protons (33-H/37-H and 38-H/42-H) were aligned under approxi-

> (3) Morohashi, A.; Satake, M.; Oshima, Y.; Igarashi, T.; Yasumoto, T. *Chirality* **²⁰⁰¹**, *¹³*, 601-605.

> mately 20° of the dihedral angle.² Although this conformation best explained the observed NMR data, it remained some-

> LM rings), conjugated double and triple bonds, chlorine atoms and an amino group, and glycosidic residues, including an uncommon L-xylose. The relative stereochemistry of the fused A-E polycyclic ether ring domain and four 1,6 dioxadecalin units was determined by extensive NMR

[†] Tohoku University.

[‡] University of Tokyo.

[§] Japan Food Research Laboratories.

⁽¹⁾ Igarashi, T.; Satake, M.; Yasumoto, T. *J. Am. Chem. Soc*. **1996**, *118*, ⁴⁷⁹-480.

⁽²⁾ Igarashi, T.; Satake, M.; Yasumoto, T. *J. Am. Chem. Soc.* **1999**, *121*, ⁸⁴⁹⁹-8511.

Figure 1. Proposed structures of prymnesin-1 (PRM1, **1**) and prymnesin-2 (PRM2, **2**).

what ambiguous for the relative configuration between the C-37 and C-38 positions.

We have already demonstrated that the synthesis of model fragments coupled with *J*-based configuration analysis $(JBCA)^4$ has successfully elucidated the relative configuration of the acyclic portions of maitotoxin, the most toxic and largest nonbiopolymer.⁵ A similar approach was applied to prymnesins, and the relative configuration of the I/J ring juncture was unambiguously confirmed.⁶ As part of our studies toward complete stereochemical assignment of prymnesins, we describe herein the synthesis of two diastereomeric CDE/FG ring models **3a** and **3b** for comparison of their NMR data with those of prymnesins, which led to reassignment of the proposed stereochemical assignment of the E/F ring juncture of the natural products.

Retrosynthetic analysis for convergent synthesis of model compounds **3a** and **3b** is outlined in Scheme 1. We

envisioned that the six-membered E ring within **3a** and **3b** could be formed by reductive cyclization of dihydroxy ketones **4a** and **4b**. These intermediates, in turn, would be obtained through convergent coupling of the acetylide anion generated from alkyne **5** with aldehydes **6** and *ent*-**6**.

The synthesis of the CD ring alkyne **5** started with bicyclic ketone 7^7 (Scheme 2). Ring expansion⁸ of 7 with tri-

^a Reagents and conditions: (a) trimethylsilyldiazomethane, BF_3 ^{\cdot}OEt₂, CH₂Cl₂, -78 °C; (b) CSA, MeOH, rt, 67% (two steps); (c) LiHMDS, Et₃N, TMSCl, THF, -78 °C; (d) OsO₄ (cat.), NMO, THF/H₂O, rt, 89% (two steps); (e) DIBAL-H, CH_2Cl_2 , -78 °C; (f) $Me₂C(OMe)₂$, CSA, CH₂Cl₂, rt, 95% (two steps); (g) H₂, Pd(OH)₂/ C, MeOH, rt, 97%; (h) SO_3 ·pyr, Et₃N, DMSO, CH₂Cl₂, 0 °C; (i) CBr₄, PPh₃, CH₂Cl₂, rt, 85% (two steps); (j) NaHMDS, THF, -100 \degree C, then *n*-BuLi, 90%.

methylsilyldiazomethane in the presence of BF_3 ^{OEt₂ gave,} after acidic treatment, seven-membered ketone **8** in 67% yield for the two steps. Ketone **8** was converted to the corresponding silyl enol ether, which was then oxidized with $OsO₄$ to afford α -hydroxy ketone **9** in 89% yield as the sole product.⁹ DIBAL-H reduction of **9** followed by protection of the resultant diol gave acetonide **10** in 95% overall yield. The stereochemistry of **10** was unambiguously established by

⁽⁴⁾ Matsumori, N.; Kaneno, D.; Murata, M.; Nakamura, H.; Tachibana, K. *J. Org. Chem*. **¹⁹⁹⁹**, *⁶⁴*, 866-876.

NOEs between 30-H/32-H and 32-H/33-H.10 Removal of the benzyl group by hydrogenolysis provided alcohol **11** (97%), which was then converted into dibromoolefin **12** in two steps (85% yield).¹¹ Finally, sequential treatment with NaHMDS and *n*-BuLi afforded the desired alkyne **5** in 90% yield.12

For the construction of the FG ring aldehyde **6**, we used ketone **7**⁷ as the same starting material, which was converted to *exo*-methylene 13 through Peterson olefination¹³ (Scheme 3). This olefin was subjected to hydrogenation/hydrogenoly-

 a Reagents and conditions: (a) TMSCH₂MgCl, THF, 0 $^{\circ}$ C; (b) HOAc, 120 °C, 55% (two steps); (c) H₂, Pd/C, EtOAc, rt, 50%; (d) SO_3 pyr, Et₃N, DMSO, CH₂Cl₂, 0 °C, 85%.

sis to produce an approximately 2:1 mixture of reduced products, from which the desired alcohol **14** was separated by column chromatography on silica gel in 50% yield.14 The stereochemistry of the axial-oriented methyl group at C39 was confirmed by NOE between 39-Me and 41-H.¹⁰ Oxidation of **14** gave aldehyde **6** in 85% yield.

With the desired **5** and **6** in hand, we next focused our attention on their coupling (Scheme 4). An initial attempt to couple the lithium acetylide generated from **5** (*n*-BuLi, THF, -78 °C) with 6 gave a poor yield of the desired propargylic

a Reagents and conditions: (a) 5 , *n*-BuLi, THF, -78 °C, CeCl₃, then 6 , 93% ; (b) H_2 , Pd/C , MeOH, rt; (c) TPAP, NMO, 4 Å MS, CH₂Cl₂, rt, 80% (two steps); (d) 6 M HCl, THF, $0 \rightarrow 30$ °C, 89%; (e) *^p*-TsOH'H2O, MeOH, rt, 44% (92% based on recovered **4a**); (f) Et₃SiH, BF₃[•]OEt₂, CH₂Cl₂/MeCN, 0 °C, 83%; (g) Ac₂O, DMAP, $CH₂Cl₂$, rt, quant.

alcohol **15** together with recovered **5** and **6**. However, a less basic alkynylcerium reagent¹⁵ prepared from the lithium acetylide and cerium(III) chloride was more satisfactory and added successfully to aldehyde **6** to give **15** as an approximately 7:3 diastereomeric mixture in high yield. Hydrogenation of the triple bond followed by oxidation of the secondary alcohol with TPAP/NMO provided ketone **16** in 80% yield over the two steps. The acetonide group was removed by treatment with 6 M HCl (89%), and the obtained keto diol **4a** was then treated with *p*-toluenesulfonic acid in methanol to yield methyl ketal **17** in 44% yield along with recovered 4a (52%).¹⁶ Finally, reduction of 17 with triethylsilane in the presence of BF_3 ⁻OEt₂ furnished the CDE/ FG ring model **3a** in 83% yield.17 The stereochemistry of **3a** was unambiguously established by NOE and coupling constant data. Similarly, the diastereomeric model **3b** was prepared from alkyne **5** and aldehyde *ent*-**6**. 18

The two diastereomeric CDE/FG ring models **3a** and **3b** were subjected to the NMR study, and the ¹H and ¹³C NMR

^{(5) (}a) Sasaki, M.; Nonomura, T.; Murata, M.; Tachibana, K. *Tetrahedron Lett*. **¹⁹⁹⁴**, *³⁵*, 5023-5026. (b) Sasaki, M.; Nonomura, T.; Murata, M.; Tachibana, K. *Tetrahedron Lett.* **¹⁹⁹⁵**, *³⁶*, 9007-9010. (c) Sasaki, M.; Matsumori, N.; Murata, M.; Tachibana, K.; Yasumoto, T. *Tetrahedron Lett*. **¹⁹⁹⁵**, *³⁶*, 9011-9014. (d) Sasaki, M.; Matsumori, N.; Maruyama, T.; Nonomura, T.; Murata, M.; Tachibana, K.; Yasumoto, T. *Angew. Chem., Int. Ed. Engl.* **¹⁹⁹⁶**, *³⁵*, 1782-1785. (e) Nonomura, T.; Sasaki, M.; Matsumori, N.; Murata, M.; Tachibana, K.; Yasumoto, T. *Angew. Chem., Int. Ed. Engl.* **¹⁹⁹⁶**, *³⁵*, 1786-1789. For the work from Kishi's group, see: (f) Zheng, W.; DeMattei, J. A.; Wu, J.-P.; Duan, J. J.-W.; Cook, L. R.; Oinuma, H.; Kishi, Y. *J. Am. Chem. Soc*. **¹⁹⁹⁶**, *¹¹⁸*, 7946- 7968.

⁽⁶⁾ Sasaki, M.; Shida, T.; Tachibana, K. *Tetrahedron Lett*. **2001**, *42*, ⁵⁷²⁵-5728.

⁽⁷⁾ Mori, Y.; Yaegashi, K.; Furukawa, H. *Tetrahedron Lett.* **1999**, *40*, ⁷²³⁹-7242.

⁽⁸⁾ Mori, Y.; Yaegashi, K.; Furukawa, H. *Tetrahedron* **¹⁹⁹⁷**, *⁵³*, 12917- 12932.

⁽⁹⁾ For similar stereoselective introduction of a hydroxy group into a seven-membered ether, see: Tsukano, C.; Sasaki, M. *J. Am. Chem. Soc*. **²⁰⁰³**, *¹²⁵*, 14294-14295.

⁽¹⁰⁾ Numbering of all compounds in this paper corresponds to that of prymnesins.

⁽¹¹⁾ Corey, E. J.; Fuchs, P. L. *Tetrahedron Lett.* **¹⁹⁷²**, *¹³*, 3769- 3772.

⁽¹²⁾ Grandjean, D.; Pale, P.; Chuche, J. *Tetrahedron Lett*. **1994**, *35*, ³⁵²⁹-3530.

⁽¹³⁾ Boeckman, R. K., Jr.; Silver, S. M. *Tetrahedron Lett.* **1973**, *14*, ³⁴⁹⁷-3500.

⁽¹⁴⁾ For similar face-selective hydrogenation, see: (a) Wipf, P.; Uto, Y.; Yoshimura, S. *Chem. Eur. J*. **²⁰⁰²**, *⁸*, 1670-1681. (b) Ireland, R. E.; Daub, J. P. *J. Org. Chem*. **¹⁹⁸¹**, *⁴⁶*, 479-485.

^{(15) (}a) Imamoto, T.; Kusumoto, T.; Tawarayama, Y.; Sugiura, Y.; Mita, T.; Hatanaka, Y.; Yokoyama, M. *J. Org. Chem*. **¹⁹⁸⁴**, *⁴⁹*, 3904-3912. (b) Imamoto, T.; Sugiura, Y.; Takiyama, N. *Tetrahedron Lett*. **¹⁹⁸⁴**, *²⁵*, 4233- 4236. (c) Fox, C. M. J.; Hiner, R. N.; Warrier, U.; White, J. D. *Tetrahedron Lett*. **¹⁹⁸⁸**, *²⁹*, 2923-2926. (d) Molander, G. A. *Chem. Re*V. **¹⁹⁹²**, *⁹²*, $29 - 68$.

⁽¹⁶⁾ Direct treatment of **16** with excess amounts of *p*-toluenesulfonic acid in methanol resulted in a low yield of methyl ketal **17**.

⁽¹⁷⁾ Lewis, M. D.; Cha, J. K.; Kishi, Y. *J. Am. Chem. Soc*. **1982**, *104*, ⁴⁹⁷⁶-4978. (18) Synthesis of compounds *ent*-**6** and **3b** are included in Supporting

Information.

Figure 2. Revised structure of prymnesins.

chemical shifts for the C35-C40 portion of each compound were compared with those of *N*-acetylprymnesin-2 (NAPRM2) (Table 1). The NMR data observed for **3b**, and not for **3a**,

Table 1. Selected NMR Data of the C35-C40 Regions in NAPRM2 and Model Compounds **3a** and **3b** (600 MHz, 1:1 C_5D_5N/CD_3OD

	NAPRM ₂		3a		3b	
	$\delta_{\rm H}$	$\delta_{\rm C}$	$\delta_{\rm H}$	$\delta_{\rm C}$	δ H	$\delta_{\rm C}$
35	1.37	32.4	1.42	32.4^a	1.38	32.3
	2.02		2.03		2.03	
36	1.23	30.9	1.22	28.4	1.24	30.6
	1.94		1.52		1.96	
37	3.07	77.9	3.24	79.7	3.09	77.6
38	3.12	84.4	3.31	84.4	3.16	83.9
39	2.04	31.6	1.81	32.5^a	2.09	31.3
40	1.44	38.5	1.52	39.0	1.45	38.1
	1.67		1.71		1.69	
$39-Me$	0.88	14.5	0.89	14.5	0.91	14.2
^{<i>a</i>} Interchangeable.						

matched well the reported values for NAPRM2. In particular, the δ _C values of C36 and C37 in **3a** deviated from those of NAPRM2 over 1 ppm, while the relevant values of **3b** match those of NAPRM2 within 0.5 ppm. The coupling constants, $J_{37,38} = 9.0$ Hz and $J_{38,39} = 2.5$ Hz, of **3b** also agreed well with those reported for NAPRM2 (8.5 and 2.5 Hz, respectively), while the diastereomer **3a** showed somewhat different values (7.8 and 1.9 Hz, respectively). In addition, NMR chemical shift values for acetate $18b$ (600 MHz, CDCl₃) corresponded well with those for peracetyl prymnesin-2 (PAPRM2), while those for acetate **18a** did not (Table 2). These results suggest that the formerly assigned configuration

of the E/F ring juncture needs to be revised to be represented by structure **3b**, though the NOE data of **3b** did not fully reproduce those observed for NAPRM2.19

In conclusion, we have synthesiszed two diastereomeric CDE/FG ring models **3a** and **3b** of prymnesins through alkynylcerium-aldehyde coupling and reductive ring-closure of the E ring. Comparison of the NMR chemical shifts for models **3a** and **3b** with those reported for natural products allowed the reassignment of the relative configuration of the E/F ring juncture of prymnesins to be that shown in Figure 2.

Acknowledgment. We are grateful to Professor Kazuo Tachibana (University of Tokyo) for helpful discussion. This work was supported by a Grant-in-Aid from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

Supporting Information Available: Experimental procedure and spectroscopic data for all compounds; synthetic scheme and NOE data for compound **3b**. This material is available free of charge via the Internet at http://pubs.acs.org.

OL049569L

⁽¹⁹⁾ NOE data for compound **3b** is included in Supporting Information.